I am essentially trying to make my own code for the nonpartest() function in the npmv package. I have a dataset:
Cattle <- read.table(text=" Treatment Replicate Weight_Loss Persistent Head_Size Salebarn_Q
'LA 200' 1 17.90 14.10 14.25 1.0
'LA 200' 2 19.30 15.30 2.56 1.0
'LA 200' 3 19.50 16.82 5.80 1.5
'LA 200' 4 18.94 12.70 7.51 1.5
Excede 1 19.60 11.20 14.52 1.0
Excede 2 19.50 10.54 9.83 1.0
Excede 3 19.10 10.83 3.82 0.5
Excede 4 20.40 11.00 0.04 1.0
Micotil 1 17.30 14.29 1.62 1.0
Micotil 2 20.00 11.65 0.13 3.0
Micotil 3 18.10 10.89 2.41 0.0
Micotil 4 19.50 12.43 5.93 2.0
Zoetis 1 18.50 25.48 10.08 1.0
Zoetis 2 17.60 20.12 11.93 1.0
Zoetis 3 19.70 23.29 7.93 2.5
Zoetis 4 18.50 28.32 13.08 3.0", header=TRUE)
Which I am trying to use to generate the matrices for Ri. and R.. and Rij in the equation in the paper below so that I can calculate the test statistics G and H
I attempted to do it using
R<-matrix(rank(Cattle,ties.method = "average"),N,p)
R_bar<-matrix(rank(Cattle,ties.method = "average"),1,p)
H<-(1/(a-1))*sum(n*(R-R_bar)*t(R-R_bar))
G<-(1/(N-a)*sum(sum(R-R_bar)*(R_prime-R_bar_prime)))
But that does not work apparently.. I'm not entirely sure what they're describing in the paper in regards to the dimensions of the R matrices.. I know you should use the rank() function and then transpose them using t() for the 'prime' versions
**Images show the excerpts of the paper where the different matrices and their dimensions and how they go in the actual equations are described