Consider the following list of data frames:
library(tidyverse)
df1 <- tibble(
id = 1:5,
A = LETTERS[1:5],
B = letters[10:14]
)
df2 <- tibble(
id = 1:3,
A = LETTERS[1:3],
B = paste(LETTERS[1:3], letters[10:12])
)
df3 <- tibble(
id = 1:6,
B = paste(LETTERS[1:6], letters[10:15])
)
df4 <- tibble(
id = 1:4,
C = paste(LETTERS[15:18], letters[20:23])
)
df_ls <- list(df1, df2, df3, df4) %>%
set_names(paste0("df", 1:4))
I would like to concatenate the elements of A
and B
into the B
column if that's not already the case. Note that not all the data frame have a B
column.
The conditions to do this are as follow:
- the data frame must have both
A
andB
columns - the first letter in
B
must be different than that ofA
I'm working with map
functions. My attempt so far (without "condition 2"):
df_ls %>%
map(
~ .x %>%
mutate_at(
vars(matches("B")),
~ {
if (c("A", "B") %in% colnames(.) %>% sum() == 2)
paste(A, B)
else
B
}
)
)
It doesn't work.
Also, I don't manage to write my second condition. I tried & setequal(. %>% pull(A), . %>% pull(B) %>% word(1))
, without success.
Edit:
I need to keep all the data frames separately. Only the B
column in df1
should be rewritten. df2
, df3
and df4
should remain unchanged.
The expected output is:
$df1
# A tibble: 5 x 3
id A B
<int> <chr> <chr>
1 1 A A j
2 2 B B k
3 3 C C l
4 4 D D m
5 5 E E n
$df2
# A tibble: 3 x 3
id A B
<int> <chr> <chr>
1 1 A A j
2 2 B B k
3 3 C C l
$df3
# A tibble: 6 x 2
id B
<int> <chr>
1 1 A j
2 2 B k
3 3 C l
4 4 D m
5 5 E n
6 6 F o
$df4
# A tibble: 4 x 2
id C
<int> <chr>
1 1 O t
2 2 P u
3 3 Q v
4 4 R w