I'm somewhat of a rookie, but trying to plot 6 parameter values against 6 means. I have this code:
meanGdEV = c(-0.74085561, -0.50071115, -0.29904040, 0.05227249, 0.43114683, 0.83719626)
modelGdEVv3$par[4:9] = c(3.145259, 2.247203, 2.088391, 2.274646, 2.239679, 1.870732)
model.linear <- lm(modelGAv3$par[4:9] ~ meanGdEV)
model.squared <- lm(modelGAv3$par[4:9] ~ poly(meanGdEV,3))
anova(model.linear,model.squared)
plot(meanGdEV, modelGdEVv3$par[4:9], type = "p", col = 1, pch=1, xlim = c(-1,1), ylim = c(-3, 3), xlab = "binmeans", ylab = "driftrate parameter values (v)")
abline(model.linear)
lines(meanGdEV, predict(model.squared, newdata = as.data.frame(meanGdEV)))
The problem is, when plotting it seems to only use the first 2 estimated parameter values. If I change the 3 in poly(meanGdEV,3)
to a different number, nothing changes, except for the values 1 and 2.
This is the plot I get with the code above
as requested, model.linear$coefficients
and model.squared$coefficients
:
(Intercept) meanGdEV
2.133396100 -0.009754665
(Intercept) poly(meanGdEV, 3)1 poly(meanGdEV, 3)2 poly(meanGdEV, 3)3
2.13375376 -0.01297941 -0.74482721 0.08564994
I hope you guys can help!