I'm new to R studio. I have a serious problem with the code that I have to solve. I've tried to make a neural network that predicts 1 class using 7 attributes with a dataset that dimension(1259, 8). After I running my code, I checked the following error:
Error in py_call_impl(callable, dots$args, dots$keywords) : ValueError: No data provided for "dense_3_input". Need data for each key in: ['dense_3_input']
Unfortunately, I don't know how to solve this problem. If anyone knows how to solve this problem, please advise me.
Here's my code
dev.off()
rm(list=Is())
cat("\f")
library(keras)
df <- read.csv("Model_5_data..csv", header=TRUE)
data<-data.frame(df)
data
str(data)
dim(data)
nrow(data)
ncol(data)
ind <- sample(2, norw(data), replace=TRUE, prob = c(0.7,0.3))
train <- data[ind==1,]
test <- data[ind==2,]
x_train <- subset(train, select=c(1,7)
x_test <- subset(test, select=c(1,7)
y_train <- train$Chl.a
y_test <- test$Chl.a
model <- keras_model_sequential() %>%
layer_dense(units = 16, activation = "relu", input_shape = c(7)) %>%
layer_dense(units = 16, activation = "relu") %>%
layer_dense(units = 1, activation = "relu")
summary(model)
model %>% compile(
optimizer = "adam", loss="mse"
)
model %>% fit(x_train, y_train, epoch = 100, batch_size = 1)
result <- model%>% evalutate(x_test, y_test)
result
and, here's my dataset sample
TOC T.N T.P Solar.rad. pH DO Temp. Chl.a
1 1.0 1.778 0.017 13.52 8.2 12.7 7.0 14.1
2 1.0 1.786 0.019 7.69 8.2 12.8 7.3 14.6
3 1.0 1.718 0.018 19.37 8.1 12.9 7.0 12.8
4 1.1 1.722 0.018 21.73 8.1 12.9 7.4 12.5
5 1.2 1.863 0.020 16.56 8.1 13.0 8.1 12.8
6 1.2 2.107 0.022 3.67 8.1 12.9 8.8 13.4
7 1.2 2.154 0.023 13.54 8.0 12.7 8.2 11.7
...
Thanks for reading my question. I hope you all have a nice day.