Basically, I want to group a 3D array by its columns, transform it into a data frame, and bind to it a new column whose value equals to the sum of all existing columns.
For example, consider the following 3D array
> (src <- array(1:8, c(2, 2, 2), dimnames=list(c('X1', 'X2'), c('Y1', 'Y2'), 1:2)))
, , 1
Y1 Y2
X1 1 3
X2 2 4
, , 2
Y1 Y2
X1 5 7
X2 6 8
I would like to convert it to
> (dest <- list(Y1=data.frame(X1=c(1, 5), X2=c(2, 6), Y1=c(1, 5)+c(2, 6)),
Y2=data.frame(X1=c(3, 7), X2=c(4, 8), Y2=c(3, 7)+c(4, 8))))
$Y1
X1 X2 Y1
1 1 2 3
2 5 6 11
$Y2
X1 X2 Y2
1 3 4 7
2 7 8 15
I know how to do the transformation for each individual column in the original array, but have no idea how to handle multiple columns simultaneously.
> library(dplyr)
> as.data.frame(t(src[, 'Y1', ])) %>% mutate(Y1=X1+X2)
X1 X2 Y1
1 1 2 3
2 5 6 11
Feel free to use base R, dplyr
, data.table
, or whatever package you prefer, as long as it's fast enough. In the real-world application, dim(src)
tend to be something like c(hundreds, tens, tens of thousands)
.