structure(list(Date = c("KW 52 / 2016", "KW 1 / 2017", "KW 2 / 2017",
"KW 3 / 2017"), Sales_AT = c(150L, 169L, 143L, 170L), Sales_CH = c(150L,
169L, 143L, 170L), Sales_GER = c(150L, 169L, 143L, 170L), Sales_HUN = c(134L,
139L, NA, 125L), Sales_JP = c(134L, NA, 142L, 125L), Sales_POL = c(127L,
175L, 150L, 141L), Sales_SWE = c(125L, NA, 159L, 131L), Sales_USA = c(169L,
159L, NA, 132L), difference_AT = c(NA, 19L, -26L, 27L), difference_CH = c(NA,
19L, -26L, 27L), difference_GER = c(NA, 19L, -26L, 27L), difference_HUN = c(NA,
5L, NA, -14L), difference_JP = c(NA, NA, 8L, -17L), difference_POL = c(NA,
48L, -25L, -9L), difference_SWE = c(NA, NA, 34L, -28L), difference_USA = c(NA,
-10L, NA, -27L)), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA,
-4L))
This is my dataset which looks like this:
A tibble: 4 x 17
Date Sales_AT Sales_CH Sales_GER Sales_HUN Sales_JP Sales_POL Sales_SWE Sales_USA difference_AT difference_CH difference_GER difference_HUN difference_JP difference_POL difference_SWE difference_USA
<chr> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
1 KW 52 / 2016 150 150 150 134 134 127 125 169 NA NA NA NA NA NA NA NA
2 KW 1 / 2017 169 169 169 139 NA 175 NA 159 19 19 19 5 NA 48 NA -10
3 KW 2 / 2017 143 143 143 NA 142 150 159 NA -26 -26 -26 NA 8 -25 34 NA
4 KW 3 / 2017 170 170 170 125 125 141 131 132 27 27 27 -14 -17 -9 -28 -27
I want to reorder the dataset to have the sales and difference column of each country next to each other.
I´m look for a dplyr solution which works like this, but in a dynamic way:
wide_result %>%
select(contains("AT"), contains("CH"), contains("HUN"), contains("JP"), contains("USA"))
Can anyone help me?