I am having problems with the scaled_assessment
data I am trying to create.
I have some time series data I split up into analysis
and assessment
. I want to scale the analysis
data and use these scaled means
and sd
's to apply to the assessment
data. I add comments to the code below.
I run into problems tackling the mutate_at
function. I want to apply the scale function which takes in the mean
and sd
from the analysis
data and apply it to the assessment
data. - For all columns in the assessment
data.
Data / code:
library(rsample)
set.seed(1131)
# I create some random data
ex_data <- data.frame(row = 1:20, some_cat_var = paste("cat"), some_var = rnorm(20), some_other_var = rnorm(20))
ex_data
# I create the analysis and assessment splits - the analysis data has 10 observations the assess has 1
rolled_ex_data <- rolling_origin(ex_data,
initial = 10,
assess = 1,
cumulative = FALSE,
skip = 0)
# My scaling function to apply to the analysis data
Scale_Me <- function(x){
(x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
}
# This I believe "works" I collect the mean and sd from the 3rd and 4th column of the data for each split
scale_values <- map(rolled_ex_data$splits, ~ analysis(.x) %>%
as_tibble(., .name_repair = "universal") %>%
summarise_at(.vars = 3:ncol(.), .funs = c(mean = "mean", sd = "sd")))
# I then apply the scale function to the analysis data (to columns 3 and 4) for each split
scaled_analysis <- map(rolled_ex_data$splits, ~ analysis(.x) %>%
as_tibble(., .name_repair = "universal") %>%
mutate_at(.vars = 3:ncol(.), .funs = c(Scale_Me = "scale")))
# My problem is here with the mutate_at function
scaled_assessment <- map2(rolled_ex_data$splits, scale_values, ~ assessment(.x) %>%
as_tibble(., .name_repair = "universal") %>%
mutate_at(.vars = 3:ncol(.), .funs = c(scaled_col = (.vars - .y$mean) / .y$sd)))
EDIT:
Okay. I have managed to get it working for the two variables using mutate
.
scaled_assessment <- map2(rolled_ex_data$splits, scale_values, ~ assessment(.x) %>%
#as_tibble(.x, .name_repair = "universal") %>%
mutate(
some_var_scaled = (some_var - .y$some_var_mean) / .y$some_var_sd,
some_other_var_scaled = (some_other_var - .y$some_other_var_mean) / .y$some_other_var_sd
)
)
This gets me a list of 10:
scaled_assessment[[1]]
scaled_assessment[[2]]
scaled_assessment[[3]]
> scaled_assessment[[1]]
row some_cat_var some_var some_other_var some_var_scaled some_other_var_scaled
1 11 cat -1.350214 -0.569947 -1.603747 -0.2836588
> scaled_assessment[[1]]
row some_cat_var some_var some_other_var some_var_scaled some_other_var_scaled
1 11 cat -1.350214 -0.569947 -1.603747 -0.2836588
> scaled_assessment[[2]]
row some_cat_var some_var some_other_var some_var_scaled some_other_var_scaled
1 12 cat 2.242594 -1.195205 3.038992 -0.7670828
> scaled_assessment[[3]]
row some_cat_var some_var some_other_var some_var_scaled some_other_var_scaled
1 13 cat 1.781132 0.9764677 1.593273 1.194117
I would like to know how to do it using mutate_at
because I do not know the number of time series columns I have to scale. Here I use 2 columns some_var
and some_other_var
but I could have 3 or 4 columns which is why I tried to use .vars = 3:ncol(.)
.