Quantcast
Channel: Active questions tagged r - Stack Overflow
Viewing all articles
Browse latest Browse all 208966

applying a function across columns by extracting similar column names

$
0
0

My data looks like:

[[1]]
        date germany france germany_mean france_mean germany_sd france_sd
1 2016-01-01      17     25     21.29429    48.57103   30.03026  47.05169

What I am trying to do is to compute the following calculation over all the lists using map.

germany_calc = (germany - germany_mean) / germany_sd 
france_calc = (france - france_mean) / france_sd

However the number of columns can change - here there are two categories/countries but in another list there could be 1 or 3 or N. The countries always follow the same structure. That is,

"country1", "country2", ... , "countryN", "country1_mean", "country2_mean", ... , "countryN_mean", "country1_sd", "country2_sd", ... , "countryN_sd".

Expected Output (for the first list):

Germany: -0.1429988 =  (17 - 21.29429) / 30.03026 
France: -0.5009603 = (25 - 48.57103) / 47.05169

EDIT: Apologies - expected output:

-0.1429988
-0.5009603

Function:

Scale_Me <- function(x){
  (x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
}

Data:

    my_list <- list(structure(list(date = structure(16801, class = "Date"), 
    germany = 17, france = 25, germany_mean = 21.2942922374429, 
    france_mean = 48.5710301846855, germany_sd = 30.030258443028, 
    france_sd = 47.0516928425878), class = "data.frame", row.names = c(NA, 
-1L)), structure(list(date = structure(16802, class = "Date"), 
    germany = 9, france = 29, germany_mean = 21.2993150684932, 
    france_mean = 48.5605316914534, germany_sd = 30.0286190461173, 
    france_sd = 47.0543871206842), class = "data.frame", row.names = c(NA, 
-1L)), structure(list(date = structure(16803, class = "Date"), 
    germany = 8, france = 18, germany_mean = 21.2947488584475, 
    france_mean = 48.551889593794, germany_sd = 30.0297291333284, 
    france_sd = 47.0562416513092), class = "data.frame", row.names = c(NA, 
-1L)), structure(list(date = structure(16804, class = "Date"), 
    germany = 3, france = 11, germany_mean = 21.2778538812785, 
    france_mean = 48.5382545766386, germany_sd = 30.0267943793948, 
    france_sd = 47.0607680244109), class = "data.frame", row.names = c(NA, 
-1L)), structure(list(date = structure(16805, class = "Date"), 
    germany = 4, france = 13, germany_mean = 21.2614155251142, 
    france_mean = 48.5214531240057, germany_sd = 30.0269420596686, 
    france_sd = 47.0676011750263), class = "data.frame", row.names = c(NA, 
-1L)), structure(list(date = structure(16806, class = "Date"), 
    germany = 4, france = 9, germany_mean = 21.253196347032, 
    france_mean = 48.5055948249362, germany_sd = 30.0292032528186, 
    france_sd = 47.0737183354519), class = "data.frame", row.names = c(NA, 
-1L)))

Viewing all articles
Browse latest Browse all 208966

Latest Images

Trending Articles



Latest Images

<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>