I am conducting SEM with R lavaan package.
When trying to estimate model parameters with:
estimator="MLM" (ML with robust standard errors and a Satorra-Bentler scaled test statistic)
and
estimator="MLMVS" (ML with robust standard errors and a mean- and variance adjusted test statistic)
I receive the exact same output, including the same chi-square and test statistic value.
What might be the reason?
R code below:
data_selected<-as.data.frame(read_sav("final.sav"))[14:20]
//define model
FullModel=
"
//Latent variable definition
IWB =~ aNOVE+bEXPL+cTEST+dSUPP+e*IMPL
//Direct effects
IWB <~ f*OSE
//Medation
IWB <~ g*WE
WE ~ h*OSE
//Indirect effect
gh:=g*h
//Total effect
total:= a+b+c+d+e+f+(g*h)
//Covariances
NOVE ~~ EXPL + SUPP + IMPL
EXPL ~~ TEST + SUPP + IMPL
TEST ~~ SUPP + IMPL
SUPP ~~ IMPL
"
measurementModel<- cfa(FullModel, data=data_selected, std.lv=TRUE, estimator="MLM")
summary(measurementModel, standardized=T, fit.measures=TRUE)