This is how i try to interpret result from model which is only printing Model_RF_RF using random forest and below is using confusion matrix but why accuracy is so different. Model_RF_RF<-randomForest(Label ~ .,data = train.tokens.tfidf.df,ntree=500,mtry=82,importance=TRUE, + proximity=TRUE,trControl = cv.cntrl,nodesize=10)
Model_RF_RF
Call:
randomForest(formula = Label ~ ., data = train.tokens.tfidf.df, ntree = 500, mtry = 82, importance = TRUE, proximity = TRUE, trControl = cv.cntrl, nodesize = 10)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 82
OOB estimate of error rate: 44.56%
Confusion matrix:
HIGH LOW MEDIUM class.error
HIGH 46 3 72 0.6198347
LOW 3 25 93 0.7933884
MEDIUM 22 20 194 0.1779661
> confusionMatrix(PD5,train$Label )
Confusion Matrix and Statistics
Reference
Prediction HIGH LOW MEDIUM
HIGH 119 0 0
LOW 1 120 3
MEDIUM 1 1 233
Overall Statistics
Accuracy : 0.9874
95% CI : (0.9729, 0.9954)
No Information Rate : 0.4937
P-Value [Acc > NIR] : <2e-16
Kappa : 0.98
Mcnemar's Test P-Value : 0.3916
Statistics by Class:
Class: HIGH Class: LOW Class: MEDIUM
Sensitivity 0.9835 0.9917 0.9873
Specificity 1.0000 0.9888 0.9917
Pos Pred Value 1.0000 0.9677 0.9915
Neg Pred Value 0.9944 0.9972 0.9877
Prevalence 0.2531 0.2531 0.4937
Detection Rate 0.2490 0.2510 0.4874
Detection Prevalence 0.2490 0.2594 0.4916
Balanced Accuracy 0.9917 0.9903 0.9895